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0. Introduction

It is shown by example that the Liouville property is not a quasi-isometry
invariant of Riemann manifolds or for reversible Markov chains. Thus the
example illustrates the subtleties involved in trying to understand the global
function theory of Riemannian manifolds in terms of the behavior of discrete
combinatorial models.

Let M be a manifold, p a complete Riemannian metric, and A, the
associated Laplacian operator. Many global function theoretic properties of A
have geometric significance. This paper is concerned with the changes in the
function theory which occurs as p is replaced by a quasi-isometrically equiva-
lent metric =; that is there exists a C > 1 such that for all ¥ € TM,, for all x
in M, wehave 1/C < p(u,u)/m(u,u) < C.

In parallel with manifolds we consider reversible Markov chains. These are
defined by specifying a positive symmetric rate function (a,;); ;cx on a
countable set X so that 7, =X, ya;; < co. These then admit the finite
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difference analogue of a Laplace operator:

(A1), = Zaij(];' _fi)’

acting on functions f from X into R.

Again one can ask how the function theory of A, compares with A, where
there is a C > 1 such that C™* < a,,/b,, < C for all i, j € X (where 0/0 = 1
by convention).

There are comparisons in both directions between manifolds and reversible
chains (see Royden, Varopolous, and Lyons & Sullivan {11], [14], [9] for
examples where a manifold problem is reduced to a discrete situation). §4 of
this paper goes in the other direction and gives one recipe for constructing
manifolds which “look like” reversible Markov chains (see H. Watanabe [15]
for another). However all these constructions fail to distinguish between
quasi-equivalent metrics on M or quasi-equivalent rate functions on X. It
seems important therefore, that one should understand how the function
theoretic properties of A are affected by these perturbations.

The properties which concern us in this paper are the Liouville properties.
We say M or X has the strong (weak) Liouville property if X has no
nonconstant positive (bounded) solutions % to Ak = 0 (henceforth such solu-
tions will be called harmonic even in the discrete case). We shall prove by
example that it can happen that (M, p) has the strong Liouville property and
(M, 7) fails to have the weak Liouville property while p is quasi-equivalent to
7. This completely settles a problem posed by Royden [11], [12]. A partial
solution involving nonhomeomorphic Martin Boundaries was given by [13]
using ideas of [1] in a fundamental way.

Not all properties are badly behaved, and under restricted conditions the
Liouville property is also well behaved. It is known [9], [8] that the existence of
a Green function is a quasi-isometry invariant for complete manifolds and for
reversible Markov chains, and understandably it is in this context that the
papers [12], [14] made use of discrete approximations to the manifolds. For
planar Riemann surfaces either of the Liouville properties is equivalent to
having a Green function and so each is a quasi-isometry invariant. Moser’s
Harnack theorem [10] proves that any surface quasi-isometric to R¢ with its
usual metric possesses the strong Liouville property and Kanai [6] has ex-
tended this to manifolds roughly isometric to R? All the examples are
consistent with the following positive

Conjecture. The Liouville property is a quasi-isometry invariant among mani-
folds of polynomial volume growth.
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Certainly the example here has exponential growth. If such a conjecture were
true it would widen the class of surfaces having the Liouville property quite
considerably—for many special cases are known (e.g. Yau [16] has proved that
any manifold of nonnegative curvature has the weak Liouville property).

There is a well-known dictionary relating the potential theoretic properties
(Liouville, Green Function, etc.) and associated probabilistic statements (trivial
shift invariant tail o-field, transience, etc.) and in the case of constant negative
curvature with ergodic properties of the geodesic flow. We give the following
easy additional characterization of the weak Liouville property: If in M there
is a surface S with M\ § having two components M;, M, and two points
X; € M, such that the probability of hitting S from x, is strictly less than one
for i = 1,2, then M does not have the weak Liouville property. If no such
surface exists, then M does have the weak Liouville property. (On the one
hand let S be a level set for the harmonic function; on the other let A(x) be
the probability starting from x that Brownian motion finishes on the compo-
nent M,.)

We give one final motivation for studying quasi-equivalence of Markov
chains. Let A be a finitely generated group and (g,)7_; a set of generators. If »

is a measure on A supported by (g=")7.,, then » defines a Markov chain by

i=1>
P(X, = gX, 1) =»(g).

Suppose v is symmetric (that is to say »(g) = v(g™") for each g € A) and
that the minimal support of » is (g;7')7_,. Then the walk is reversible. What
properties of the random walk are independent of the choice of symmetric »
(or of (g,))—in other words what properties of the walk are algebraic in-
variants of A? Recurrence is one such property. We say 4 C A is w-absorbing
if X eventually enters 4 and stays there for ever (that is (4 is thin at
infinity). For the free group on two generators the property of being w-
absorbing is not independent of »! It would be most interesting to know
whether the property of being w-absorbing is an algebraic invariant for
abelian, nilpotent, soluble, or amenable groups. (Note: one only considers
random walks coming from symmetric ».) If it failed to be invariant even for
nilpotent groups, then much simpler examples for instability of the Liouville
properties than the one given in this paper would be available.

We now summarize our main example and outline the structure of the paper.
The main theme will be to construct Markov chain examples and then build
manifolds which look like the Markov chains.

§1 introduces reversible Markov chains more fully than here.

§2 introduces a simple pair of quasi-equivalent reversible Markov chains
exhibiting instability of the weak Liouville property. Although this example is
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unsatisfactory in many ways and will not carry over to manifolds, we learn one
important point. Suppose X is a countable set admitting two quasi-equivalent
reversible Markov structures a, b. Suppose (X, a) and (X, b) are both Liouville.
If there is a subset 4 C X which is w-absorbing for ( X, a) while not for (X, b),
then there is a simple construction of a new pair of Markov chains exhibiting
the required instability of the Liouville property. :

§3 considers simple random walks on the free group I' presented by the two
generators a and b without relations. If the walk is generated by a symmetric
measure » on {a** h*!}, then Theorem 3.6 proves that the set of words with
more b’s than a’s is w-absorbing if » puts most of its mass on {»*!} but not
w-absorbing if » puts most of its mass on {a*'}. This does not complete the
paper because (being nonamenable) I' has no Liouville property.

§4 explains how to construct a manifold modelling a reversible Markov
chain. The main theorem is 4.3; however this on its own would not be enough
to obtain all the properties the model and the original chain have in common.
It is often important to exploit the symmetry of the Laplace Beltrami operator
1n addition to 4.3 to get sharp results.

85 considers the manifold model of the simple random walk on I' and shows
how the arguments used in §3 when combined with 4.3 allow one to deduce the
analogous theorem on the instability of w-absorbing sets as Theorem 3.6.
Again there are plenty of bounded harmonic functions.

§6 is concerned with modifying the Markov chain on T’ in a nonstationary
way so as to make it strong Liouville without invalidating Theorem 3.6 which
gives the instability of w-absorbing sets. It is the most laborious part of the
construction using “symmetries” of the group to simplify the presentation.

§7 goes through the by now routine extension argument to turn the instabil-
ity of w-absorbing sets for Liouville Markov chains into an instability of the
Liouville property. The final conclusion is that there are two quasi-equivalent
chains—one has only constant positive harmonic functions, the other has an
exactly two-dimensional cone of positive harmonic functions all of which are
bounded. Thus the example is not even weakly Liouville.

§8 carries out analogous arguments to those in §§6 and 7 for the manifold
examples. The same conclusions hold, however there are differences in the
details.

1. Quasi-equivalent reversible Markov chains
Let X be a countable set and q = (g;;); ;e x be a symmetric positive
function on X X X, zero on the diagonal and with 7, = X, - y¢,; < oo for all /.
Because q is symmetric it determines a special type of Markov chain on X
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called a reversible Markov chain. This chain can either be viewed in continuous
time in which case the ¢,, is the Poisson rate of jumping from i to j and =; is
the depletion rate from site i, or it can be viewed in discrete time in which case
Pi;j = 4i;/m; is the probability that the next jump will be to site j given that the
process is currently at i. The connection between the two processes is that the
discrete process records precisely the jumps of the continuous time process.
Reversibility is significant because in this case alone the infinitesimal generator
of the Markov chain is symmetric. Henceforth and without further mention all
our Markov chains will be reversible.

The Laplace-Beltrami operator on a Riemannian manifold is also symmetric.
The discrete and continuous set-ups determine Dirichlet spaces and these
spaces are fairly similar. The similarity between the two does not guarantee all
that much, however it is often true that properties of Brownian motion on
manifolds can be mimicked on reversible Markov chains and vice versa [9],
(14}, [5]). :

With this in mind we proceed as follows. We say g, ¢ determine quasi-
equivalent reversible Markov chains on X if for some C > 1 we have ¢;;,/C <
g;; < Cq/; for all i, j€ X. We will give two examples of pairs of quasi-
equivalent Markov chains, one of each pair admits nonconstant bounded
harmonic functions, the other does not. (A harmonic function on X is any
function f with the property 7,f; — X, ., ¢;;f; = 0, in other words f composed
with the discrete time Markov chain gives a martingale.) The first pair is
relatively simple to describe but does not seem to have a manifold analogue.
The second example has common features with the first example but is
altogether harder. However, it does allow a manifold analogue and because one
can say things about positive harmonic functions in this case, it is a stronger
Markov chain example.

2. The simple Markov chain example
Our construction has two parts. Our final state space will be Z X Z X C,
(where C, = {0, 1} is the cyclic group of order 2) but initially we consider only
Z X Z. We define quasi-equivalent rate matrices ¢* as follows: q’i‘j = () unless
i,j € Z X Z are nearest neighbors in the geometric sense. Let j = (7, s); then
2r+‘s

A . A _ +
Dirs-Dir) = A and gy 000 = 27",

all other terms being determined by symmetry (see for example Figure 1).

Now translations do not preserve q*, rather they multiply all the rates by a
fixed power of 2. Since the transition probabilities p;; = g}/m; are not affected
by such transformations we see that the Markov chain (in discrete time) is
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invariant under the group action. Let »,(j) = p(}),o) j- We see that 4 is harmonic
on Z X Z for q* if and only if v, *h = h. As Z X Z is abelian the classical
theorem of Choquet and Deny [3] implies that if /4 is bounded and harmonic,
then # is constant. So we have the weak Liouville property:

Proposition 2.1. (Z X Z,q) admits only constant bounded harmonic func-
tions.

Let X, be independent random variables with values in Z X Z and law »,.
One observes that the random walk from (0,0) determined by ¢* can be
realised as Z, = X7 X.. If p, = E(X,), then by the strong law of large numbers
[2] n~'Z, converges to u, almost surely. In particular, one observes that if
A > 1, then Z, eventually remains strictly above the diagonal {(r,r)|r € Z}
in Z X Z, and if A < 1, then it remains strictly below. We will require the
following rather weak consequence.

Proposition 2.2. There is a subset A C Z X Z and two choices A, N > 0 s0
that the q* process finally enters A and remains there with probability one and
the q~ process quits A without ever returning to it—again with probability one.
We will say A is w-absorbing for the " process and w-transient for the
g"-process.

(0,1) 1,1) (2,1)
2 4 8
A2 A4 A8
(0,0) h,O) 2,0)
1 2 4
Al A2 A4
(Or_l) (1,_1) (2/"1)
X 1 2

FIGURE 1
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We now explain a simple construction which we use again later in the more
sophisticated example. Take the set Z X Z X C,, where C, = {0,1}, and
define two symmetric rates on the set so that the Z X Z coordinate Z, of the
random walk in continuous time (Z,, W,) is independent of the C, coordinate
W, and looks exactly like the g* (¢*)-process defined above. The C, coordi-
nate W, alternates at a positive rate only when Z, is in 4, and then at a rate
comparable to the jumping rates prevailing in Z X Z at Z,. To be precise, if
mn€&€ZXZ, i=0orl,then

p(m i) q(m ), p(m Dm,i) q(m,n)’

and if m € 4 we also put

p(m,O).(m,_l) = Z ql)r\l,n = T pZm,O),(m,l) = Z qrﬁl/,n =
nezZxz nEZXZ
otherwise the rates are zero. We have the following.

Theorem 2.3. (Z X Z X C,,p) admits no bounded nonconstant harmonic
function. (Z X Z X C,,p") admits a two-dimensional space of bounded harmonic
functions.

Proof. Let h be a positive bounded harmomc function on (Z X Z X C,, p)
and let % denote its reflection in the C, coordinate. This is also harmonic and
(h + k) /2 is a constant ¢ because it is C, invariant and so induces a bounded
harmonic function on (Z X Z, g*). It follows that if /((m,0)) > c, then 4(m, 1)
< ¢, etc. If the random walk X, induced by p has coordinates (Z,, W,), then
with probability one W, changes value infinitely many times as ¢ — oo because
A is w-absorbing for Z,. Therefore limsup, , , #(X,) > ¢ and liminf, |,  2(X,)
< ¢. But 2(X,) is a bounded martingale, hence its limit exists almost surely
and A(X,) can be recovered from this limit by conditional expectation. Thus
h(X,) = c with probability one and so % is constant.

We now consider the process X, = (Z;,W,") induced by p’. We note that, in
contrast with the previous case, with probability one W,” changes value only
finitely many times as ¢ increases to infinity (because A4 is transient for Z;). It
follows that if Ay(x) =P (W, is eventually 0|, = x), then A, is a noncon-
stant bounded harmonic functionon Z X Z X C,; h; = 1 — h is another.

Let f be bounded and harmonic so that 0 < f < ¢(h, + h;); it follows from
the lattice property [4] for potential theory (or the martingale convergence
theorem since %, A4, are bounded) that f= f, + f,, where f, < ch,, i =0,1
and f; is harmonic. Because of the particular choice of hy, h, here we see that
the decomposition of f is unique. Abstractly this is because the measures on
the Martin boundary giving rise to 4, s, are mutually singular. A simple ‘
proof in our situation comes from the following observation. Any bounded
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of the remaining Brownian paths to terminate on the open end of C,. On each
occasion we put approximately the same proportions of the existing paths on
the open ends of the tubes (C,)/_,. Eventually all paths will be included in this
iteration so we see that the probabilities of exit from the various tubes must
also be in these approximate proportions:

P(z, exits S(d,,- - -, d,) through C;)
(1+¢)’/d, _ (1+9)'4,
(1 + 8) ~2ZZ=1(dk)_l ;=1(dk)_1

and is also
(1+¢)"/d,
(1+e)°Tiy(d) "

This is what we required.

5. A manifold model of the free group I" and an extension of Theorem 3.6

Let Q be a compact Riemann surface with four discs excised from it and let
S(R/p,R/p,R/q, R/q) be the surface obtained by adjoining four tubes
which on this occasion we label C,+1, C,=1. Now take T' copies (S,),er of
S(R/p,R/p.R/q,R/q) (where p+ g =1) and let ~ be the equivalence
relation identifying C,-: in S, with C, in S,-1,, C,-1 in S, with C, in S,-1,,
etc. Then M =U geT g 18 @ Riemann surface without boundary with I' acting
as a discontinuous group of isometries on it by # € I' taking S, onto S,.
M /T is a compact manifold obtained by adjoining two more handles to Q.

As in §4, let z, be Brownian motion on M, and let s, be the nth occasion
that z, emerges from one of the tubes G, 8 € {a, b}, having last entered it
from the other end. At that time s,, the Brownian path z, is at an interior
point of exactly one S,, g €T} let X be that g. We have the following
immediate consequence of Theorem 4.3.

Proposition 5.1.  Fix € > 0. Then there is an R such that for any sequence

Xo, -+, X,_1 we have the uniform estimates
P - ; (1 +¢)
—— < P(X X = X 1 Xp) </,
2(1 + E) ( ntn—1 a I n~-1 0) 2
q & o_1 i q(l + E)
— < P( X =b'|X, 1, ", Xp) < ———=
2(1 + E) ( n*n—1 | n—1 0) 2

for all choices of p and i = +1.
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So, as before, although X is not Markov, in this quite precise sense it is
nearly so. Sufficiently nearly so that the arguments in §3 may be repeated. Let
ty be the Nth occasion that X, X! =a*! and consider the term §, =
X, X' =a%b™ If welet py=(1L+e&p and p,= (1 - e)p we have the
following estimates.

Theorem 5.2.

p,(1 ‘Pl)i < P(IN—Fl —iy=i+1]X,n< ZN) <Pl(l _Pz) s
j+2: 279 (G4 20!
i+ i)

8

' Pz(l _Pl)
=0

H

oo 4227020 ( G4 20
. _ J+2i J
<Pyl mst) < BpQ=p) T

where i > 0, i, j€ Z.

From these estimates it is trivial that if p, is chosen as in Theorem 3.6 and p
is less than py(1 + ¢)~!, then the arguments and estimates in the proof of
Theorem 3.6 apply equally here.

6. A nonstationary random walk on T;
the elimination of positive harmonic functions

In §3 we introduced a parametrized family of random walks on I' with the
significant property that I' admitted subsets which were w-absorbing for one
choice of parameter but not for others. However any stationary random walk
on a nonamenable group (such as I') will admit nonconstant bounded harmonic
functions. So the idea of constructing an example by joining two copies as in
§2 will not work. In this section we will describe nonspatially homogeneous
modifications to the random walks on I' introduced in §3. The resulting
Markov chains retain the property concerning w-absorption but do not admit
positive harmonic functions. Later sections will extend these modifications to
the manifold model and construct the final example.

In [9] a sufficient condition was given for a positive harmonic function on a
manifold to be completely determined by its values at a particular sequence of
points x,. Although it was not explicitly pointed out there, the sequence did
not need to consist of distinct points; letting them all coincide, one has the
following condition which is sufficient (and obviously necessary) for the
nonexistence of positive harmonic functions.

Let (X, p,;) be any Markov chain and let 4; C X be a sequence of subsets
of X with U4, = X. Let B, D A4, be a second sequence of sets with the
property X, cp Py = 1 whenever j &€ A4, We will talk about a numerical
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function f being harmonic on B, if X, o x pj f(k) = f(j) whenever j € B,.
We may then consider the Harnack constant ¢; of the pair (A4;, B,). That is

h(x)
h(y)

We note that in any situation where A, is finite and communication in B,
between any two sites of 4, is possible, then c; is finite.

Lemma 6.1[9].  Let x, be a sequence in X. Any positive harmonic function on
X is uniquely determined by its values on (x,) if there is a choice of pairs
(A, € B,) with x, € A;, UA, = X, and a uniform bound C on the Harnack
constants c; of the pairs A;, B,.

In particular if (; 4, is nonempty, then we deduce from Lemma 6.1 that all
positive harmonic functions are constant. (The referee has pointed out that in
this special case one has a simpler argument because sup % < cinfk and if & is
nonconstant we may assume the right-hand side is zero.) We now explain in
detail the modified walks on I

Let 6, be a permutation of the 4 - 3"~! reduced words of length n. Choose
the permutation so that it is of order 3”~! with our equal orbits: the reduced
words commencing on the left with a, a™%, b, and 57! respectively. Let g€ I’
be of reduced length at least #; there is a unique factorization of g into g,g,
with |g| + g, = |gl, |8,| = n. Define g, = g,(g,0,). Then because 6, does
not alter the leftmost element of g, we see that |gf,| = |g] and so we have
extended 6, to be a permutation of the words of length m for each m > n.
With a bit of thought the sequence (8,),,_, can be arranged so that (4,)* = 6,_,
whenever both are defined. The essence of §, is that if we apply it to an
element g with |g| > n, then gf and g have essentially the same numbers of
a’s and b’s etc.

Define symmetric rates r( p) on I as follows

X,y € A;, h positive on X and harmonic on B,.}.

¢ = sup{

J4 . _
5 if gg5" = a*!,
1-p . -1 _ p+l
r(p; 81,82) = > if g,g," =b*",
1 1f (1) gl = g20nil and (il) |g1| € [Rn7Sn]’
0 otherwise,

where R,, S, are fixed integers satisfying n < R, < S, < R,,, for each n.
For suitable choice of R,, S, this will have all the required properties. The
evolution of (X’,r,T') is best understood in continuous time. X’ evolves by
being left multiplied by a*'’s and b*'’s at rates p/2, g/2 and occasionally
(when the length of the word lies in one of the bands [R,, S,]) the rightmost »
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letters of X’ are modified at rate 1. We may couple X’ with the stationary
random walk introduced in §3 by letting X, = (X, - X,’;_l) (X X,;fl),
where ¢ denotes the ith occasion that X’ is modified on the left and » is
max{i|¢; < t}.

We will now prove that providing the R, S, satisfy lim,_,  »"'R
then

n= 0,

In particular we see that as p varies, the set of { g|/,(g) > [,(g)} can be made
either w-absorbing or the complement of such a set.

First observe that /(X/)/¢ tends to a strictly positive limit for each choice of
p. In particular with probability one there will be a last time 7, that
inf, . (] X/]/)]X/]) < 1 — & From this time onward simple algebra allows one to
estimate | X, 1X/| as follows.

Lemma 6.2. Foranyt > T, we have

X

<|Xr| +| X4 | + 2max{k|3s € [T,,1), X! € [R,, S, ]}

Proof. After ¢ exceeds T, it is clear that never again will | X;| go below k
after having exceeded R,. In particular a simple induction argument shows
that X/ and X, X1 1XT differ only in the last K terms, where K = max{k|3s

T, t), X! € [R,, S,]}, s0 | X7 XX 'X/| < 2K and the result follows.

Remark As R, /k — oo we see that

N 2| X/ K
(1-¢)R

In particular as ¢ goes to o, K goes to infinity and |X;'X/| = o(|X/).
Because the R, S, do not depend on p we have shown that the remarks of §3
carry over to the Markov chains X, obtained as p varies.

Now, using Lemma 6.1 we wish to prove that providing S, — R, grows
more rapidly than (3"71)2*¢ for some & > 0, then (T, r(p)) does not admit
positive harmonic functions. Our arguments in the Markov chain and Mani-
fold cases are not the same; in the latter case we obtain an existential theorem
for each fixed p (or finite selection of p’s) but no estimate of growth of rate of
S, — R,,; in the Markov chain case one obtains much sharper results. The main
problem is to eliminate positive harmonic functions—bounded harmonic
functions are easier.

| X,

forall t > T,.
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The main technical result will be the following:
Proposition 6.3. If |y| = R, and T = inf{¢}|X]| > S,}, then

vi<3hvac (&g =s,),

1_ P(Xre4)|X/|>R, V(<T)
C pv(xiea0)|x/| >R, Vi<T)

Remark. The theorem says that translating 4 by 6, does not affect the
hitting probabilities. This is not surprising because, conditioned on | X;/| never
going below R,, we may decouple the X and 6 actions completely and make
them independent. . '

Proof. Let ®, be a continuous time random walk on the cyclic group of
permutations <0,{ |j < 3"‘1> jumping from 6/ — §/*! with rate one, and let
X, be chosen independently to be the simple random walk on I' determined in
§3 with X, = vy and |y| = R, but conditioned so that | X,| > v, Vs < 7. Then
we have X,0, is identical in law to X, conditioned so that | X/} > vy for all
s < T. This separation of X, into two parts, together with the approximate
equidistribution, will yield the theorem.

For general times s the two variables X, ©, are not independent, however if

ty <ty < --- <tg_p < --- <1, denote the successive jump times of X,
then (®, ), < and (X, ), cn are independent Markov chains for ¢, < T. So
P(Xped)= ¥ Y P(X, €467, =T) P(O, =6/)

k>S,—~R, 05 <3"!

But as S, — R, > (3""1)2*¢ and ¢, is always greater than S, — R,, it follows
that ©, is approximately equidistributed and

P(®, =6/) ~ 370D,

So

}_1 Y P(x,€467)

0gj<3""!

PY(X;€4)~

and the right-hand side is invariant under replacing 4 by 46,7". So the lemma
is proved modulo the claim that the random walk on the cyclic group with 37!
elements <0,{> given by ©, is approximately equidistributed by the time
k>SS, —R,> (3" 12*e,

This can be shown with an explicit calculation using the probability gener-
ating function of a geometric mixture of balanced binomial distributions or by
using more general central limit type theorems. ‘



INSTABILITY OF THE LIOUVILLE PROPERTY 53

As we are unable to use such sharp techniques or to obtain the rate of
convergence in the manifold case we do not give further details of the
computation here. Rather we explain the significance of Proposition 6.3.

Let us now suppose that |y,| < n; we run the unconditioned X, from
Yo = X§ until T the first time |X/| > S,. We wish to compute PY( X7 € 4)
and show that it does not depend much on the choice of vy,. This is achieved by
splitting the walk (X/), .,y into three parts. Let 1, denote the time X, last
exits {Jy| < n} and 7, the time of last exit from {]y| < R,}. Both of these
times are splitting (but not stopping) times so X/, ., X/, are both Markov
processes—in fact (X/,,);2§~™ is identical in distribution to X, started on
{ly| = n (or R,)} but conditioned to remain in {|y| > n (or R,)}. Moreover,
conditional on X, the process X/, is independent of X/, # < 7. So we have

P(X;ed)= Y P X, =v,)Pn(X;e4(X,|>nVs<T).
nl=n

But we claim that P (X[ € 4I|X]} > n, Vs < T) is essentially (to within a
fixed factor independent of A4, n) independent of the choice of y;. To see this
we repeat the splitting argument and condition on X, :

Pr(X;eA|X/|>nVs<T)
= Y P(X.=v,) Pe(X;e4|X/|>R, Vs<T)
1721=Rn
and by Proposition 6.2 this equals (to within fixed small multiples)
Y Pr(x. =v,)P=(X;c48/||X!|> R, Vs<T), Vj<31
[v2l=R,
but the random walk on {yi|y| > n} is preserved by 8/ (because 6] was
chosen so that (67)® = 6_,) so this last expression equals
S (X, )P X< A X > R, Vs < T).
lv2l=R,
Using the #/ invariance again,
PYl(XT’z = Yz) = Pﬁo”—j( X, = 720;/),
and contracting the sum again we have
Pu(X;€A|X | >n,Vs<T)
~ P X, e Al X! | >0, Vs<T), Vj<3 L

Let gy - -+ p, € T be representatives of the four orbits O,,- - -, 0, determined
by the 8§, action on the words of length n. We have

4
PY(X;eA4)~ YLPu(X, € 0,)P*( X7 A|X,| >n,Vs<1).
1
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Consider P™(X, € O,). There is a lower bound ¢ depending only on p
for P(}X/] > |X;|, ¥t > 0) which is independent of the position of X. It
follows that on |y,| = n we have P™(X € O) > ¢;, Vy, € O; moreover
Pr(X, € O;)is harmonic on |y| < n and since v, is at most a word of length
4 away from any of the O, if |y,| = n — 1, there is a second constant ¢, such
that PY(X quits |y| < n through O;) > ¢y, |yvg|=n — 1; it follows that
PY(X, € O) > ¢y¢c;, Yy with |y| = n — 1 and hence by the minimum prin-
ciple for all y with |y| < n.

Combining P*(X, € O,) ~ 1 with the expression for P"( X7 € 4) above
we have

4
Pr(X.€A)~ Y PH(X. € A||X,| >n,Vs<t)
1

for all v, with |y,) < n. The right-hand side does not depend on vy, so we have
proved:

Theorem 6.4. There is an absolute constant C depending only on the choice of
(R,, S5, suchthatif AC {y €T||ly|=3S,} and T = inf {|X]| > S,}, then
sup PY( X;. € 4) < C inf PY(X; € 4).

lyl<n

fyl<n

Remark. It follows thatif 4 > 0 is harmonic on |y| < S,, then

h .
sup [——(J;} < C.
v,y el h(‘Y )

YL iv|<n
Thus by Lemma 6.1 and the remark following it, I' with the new random walk
X, admits no positive harmonic functions.

7. Completing the Markov chain example

§6 was dedicated to constructing a one-parameter family of reversible

Markov chains X’ on I' with the following properties.
(i) For any choice of the parameter p the random walk on I' admits no

global positive harmonic functions other than constants.

(ii) For one choice of p it follows that /,(X,) > {,(X]) for all large ¢ with
probability one, for another {,( X;) > [, (X)).

(iii) There is a uniform upper bound (six) on the number of sites in [ one
can jump to from a given site. Further the rates of jumping to these sites given
by r( p) are also uniformly bounded.
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We now proceed as in §2. Let IT = I' X {0,1}, and give it reversible Markov
chain structure by defining #( p) by

7(p; (v,5), (v,s))=r(p; v,¥"), v.v €T, ¥se (0,1},

and

7(p; (v.0), (v.1)) = 7(p; (v,1), (v,0)) = 1 if 1,(y) > I,(¥y).

We extend «# to II X II by making it zero if not otherwise specified as above.

The I' coordinate of this new process Y, on II is indistinguishable from X
So for p = p, close to 1 the process Y, eventually stays in {/,(y) > [,(y)} X
{0,1} and so crosses from one copy of I' to the other infinitely many times
with probability one; if p is small, Y, will stay on one copy of I or the other
for large ¢. We prove our main theorem.

Theorem 7.1. (1L, w( p,)) admits no nonconstant positive harmonic functions,
(11, #( p,)) admits precisely a two-dimensional cone of positive harmonic func-
tions, and all positive harmonic functions are bounded.

Proof. For any p, we note that if 4 is #( p) harmonic and 4" denotes its
reflection (i.e., 2" ((y,0)) = h((y, 1)), etc.), then A" is also harmonic. Moreover
h + k7" is constant because (I',r( p)) admitted no positive harmonic functions
except constants. So we always have A(y,0) + 2(y,1) = ¢ independent of
vy € T'. The positive harmonic functions on II form a convex cone, and when
normalized to be one at any fixed x, € II one obtains a compact set because
the Harnack conditions alluded to before 6.1 give equi-continuity and uniform
boundedness on bounded sets. It follows that every positive harmonic function
is a convex combination of extremal (or minimal) positive harmonic functions
(that is, functions on the extreme Martin boundary). Such an extremal func-
tion # has the property that if », > 0 is harmonic with ah, < A, a > 0, then
Bh, = h for some B. It is a simple consequence of this that if # is extremal
harmonic, then either (i) lim,_  #(Y/) =0 for almost all w and for all
starting points x = Y, or (ii) P*(lim, ,  A(Y,) € {0,c}) =1 for all x and
some c. Let

hy(x) = Ex(tlirg R(Y) - x{ tim h(Y,) € (a,b)}).

Then 0 < hy < h, hy is harmonic, and lim,_,  A(Y,)/h(Y,)) =1 if lim,_, . Y,
€ (a,b), a > 0. By varying a, b we see that if 4 is unbounded and minimal
then (i) applies. If 4 is bounded and minimal then (ii) applies.

We will now show that for any p, any minimal positive harmonic function A
on [II, #( p)] must be bounded. Let ¥, be the random walk, and let ¥, denote
its reflection. Then ¥, is also a Markov chain determined by #(p). If & is
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unbounded then (i) implies
lim [A(Y,) +h()] = 0,
=00

but A(y,0) + h(y,1) is constant independent of y so 2 must be zero—a
contradiction. Thus all minimal harmonic functions are bounded.

We now consider the cases p small and p close to 1. The latter is easy; let A
be a bounded minimal harmonic function normalized so that A(y,0) + A(y,1)
= 2. Then because Y, crosses between I' X {0} and T X {1} at arbitrarily
large times and at these times h(Y,) crosses the value 1 we have with P*
probability one for all x

lim #(Y,) = 1.
=0

But h(x) = E*(lim, _, , 2(Y))); so h is constant as required.

Let p be small and h,(x) be defined to be P*(lim,_, Y, € I' X {0}) and
h, = hi, so that h; + h, = 1. Asin §2.3 a standard probabilistic or lattice type
argument shows that any positive harmonic function with |/A||, < 1 satisfies
h = h] + h%, where i < h,, i = 1,2. If hy, h, are minimal, then /# would be a
linear combination of them, and the theorem would be proven.

Suppose & < hy. Then lim,_,  A(Y,) > O implies that X, is eventually in
T x {0} so lim,_  A"(Y,) = 0. But & + A" = ¢ so it follows that with proba-
bility one either lim, _, , #(Y,) = cand lim,_,  A"(Y,) = Oorlim,_  A"(Y,) = ¢
and lim, _, ., #(Y,) = 0 according to whether Y, is eventually in I' X {0} or not.
Identifying the limiting values of the two bounded martingales A(Y,) and
ch,(Y,) we see that h = ch, so h; is minimal. The argument for 4, is identical
and hence we finally have any positive harmonic function as a linear combina-
tion of A, and A, as claimed.

8. The manifold example

In this section we describe a pair of surfaces, quasi-isometrically equivalent,
such that the first admits nonconstant bounded harmonic functions while the
second does not even admit positive nonconstant harmonic functions. Follow-
ing §4, we will build our examples along the same lines as the Markov chain
examples in §§6 and 7. In those sections the reader will recall that first we had
a simple translation invariant walk on [, then we introduced some links
between the reduced words g with |g| € [R,,, S,] enabling the process to jump
from one such word to another in relatively few steps providing both such
words agreed in all but the rightmost »n letters. This allowed us to eradicate
positive harmonic functions while leaving untouched the asymptotic ratio of
a’s to b’s in the reduced word. Finally we took two identical copies of this
modified random walk on T" and allowed the process to flip between them if it
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is positioned on an element of T' with more a’s than b’s. This constituted the
final example. The point was that the process has two ways of getting to
infinity if a’s are rare compared with b’s because in this case the process
eventually stays on one or other copy of I. If a’s were more common than b’s
in the evolution of the random walk then the process oscillates between the two
copies of T'; so there is only one way to go to infinity and the function theory
is trivial.

We now introduce three manifolds L, M, N each covering a compact
manifold K and such that one may identify the fibers of L, M, N over K with
T, I', and I X C, respectively. I' will act on L so that L/I" is K and, in the
correspondence of §4, L essentially corresponds to the simple random walk,
M to the modified one, and N to the double copy of I'. N admits an isometry
2 without fixed point, consistent with the covering, such that #? = identity,
and N/ () = M. This corresponds to reflection. The metrics are all inherited
from K. It is by varying the metric on K smoothly that we get the different
behavior.

Let Q be a compact Riemann surface with eight discs excised; form S by
attaching to it four pairs of cylinders (C,+1, Cps1, Cyx1, Cp+1) with conformal
radius 1 and lengths (in pairs) R/p, R/1 — p, 1, and 1 respectively. The
compact manifold X is obtained by identifying the two cylinders in each pair
by overlaying them with the open end of one cylinder corresponding to the join
with Q of the other. Of course there is an ambiguity concerning the angular
orientation of the two cylinders but this is of no significance and we let it be
fixed once and for all. In any case K is a compact Riemann surface with at
least four handles, two of which we think of as variable in length.

To obtain the manifolds L, M, N we follow the reversible Markov chain
constructions.

(a) L: Identify tlle pairs Cyz1, Cpur in~S and take T copies [S(g)] ger Of the
resulting surface S. Identify C,(g) C S(g) with C,-:(ag) and C,(g) with
C,-1(bg). The resulting manifold L has no free cylinders and in fact has a T’
action on it such that L/’ = X.

(b) M: Identify the pair of cylinders C,+ is S to form S and then take T
copies (§(g))ger of this. Now choose 0 < R, < §, < R,,; < ---. We make
identifications as follows: identify

- C,(g) with C,-1(ag),

Cb(g) with C,,—l(bg),

Co(g) with Gp1(g6,) if|gle[R,.S,]
Co(g) with G(g) ifigle U [R,.S,].

neN
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So M is obtained from L by cutting the 6§ handle at S(g) whenever
lg| € [R,,S,] and rejoining it with the corresponding parts of the handles at
S(gb=*hy.

(c) N: Let X=1T X C,, where I' is generated by a, 6 and C, by ¢ (so
¢? = e and ¢ commutes with g, b). Each x has a unique expression x = gc’,
i=0,1, and we extend our definitions of length, etc., to X by |x|=]g|,
H(x)=(g), etc. Now take X copies [S(x)],x of S and identify C,(x)
with C,-1(ax), C,(x) with C,-1(bx), Gyp(x) with Gy-1(x8,) if |x| € [R,. S,],
Co(x) with G (x) if |x| & U[R,, S,], and finally Cp(x) with Cp-1(ex) if
H(x)> H(x) and Cu(x) with Cpi(x) if o (x) < #(x). To obtain the
symmetry 2 let n € S$(x) and let n” Be the element of S(Cx) corresponding to
n under the natural isometry of S(x) and S(cx). Define #(n) = n’; it is clear
that # is of order two, compatible with the covering of K, without fixed
points, and such that N/ (&) = M.

We have constructed L, M, N. Fix Q, R, [R,,S,]%_,. Then as p varies we
generate four 1-parameter families of homeomorphic manifolds K( p), M( p),
N(p), and K(p). For each p we may give K(p) the metric of constant
negative curvature —1 consistent with the conformal structure and lift this up
to L( p), etc. If p;, p, are two choices of p we may take a diffeomorphism ¢
of K(p,) and K(p,). Because K( p,) is compact this is a quasi-isometry and
so lifts up giving quasi-isometries of K(p;), L(p;), M(p,) for i =1,2. Of
course these quasi-isometries behave uniformly with respect to any local
measure of distortion.

Before outlining the remaining arguments we remark that the role of R is
unimportant here except that any sufficiently large R would suffice. All that is
required is that Theorem 4.3 should apply with a sufficiently small . However
it would be tedious to keep track of how small ¢ should be—the suspicious
reader can check that only finitely many such e will be introduced and that
their values do not depend on the choice of (R, S,)%., (although they may
well depend on py, p,).

To complete our arguments, first we fix two values p, (close to zero) and p,
(close to one) of our parameter p such that for essentially any choice of
pairs (R,,S,)7-, the Brownian motion on M(p,) eventually stays in
Ui < 20y S(g) and for M( p,) eventually stays in the complement of this set.

Second, we choose (R,, S,)%.,, which until now we have thought of as
variables, so that M( p,) admits no positive harmonic functions for j = 1, 2.

Finally we show how these two properties of M( p,) are enough for one to
conclude that N(p;) admits an exactly two-dimensional cone of positive
harmonic functions, all of them bounded, whereas N( p,) only admits constant
positive harmonic functions.

n’
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The first and third of these final arguments are mere mimics of the
arguments in §§6 and 7. The second argument is different in as much as the
analogue of §6.3 exists but has a different proof which (as we mentioned
before) will not give a quantitative estimate for S, — R, in terms of n. We take
more care over this part than the other two. The arguments involve (in a not
very deep way) the use of a boundary Harnack principle and the consideration
of extremal positive harmonic functions.

Because most of our effort will be concentrated on M we introduce some
extra notation here which will be helpful later. Let » € N and consider all the
4371 tubes C,,-1(g) which connect Q(g) with Q(g’), where |g| =7,
lg’l=r—1,and g’g~' € {a*!,b*1}, and let D, denote the collection of all
4 - 37 1circles which bisect these cylinders C,e-1(g) 1nto two equal cylinders
of half the length. Then M\ D, has two components. We let B(r) be the
relatively compact part and E(r) its complement. We let 4, = E, N B, if
r < 5. We think of B, as the ball of “radius” r, E(r) as its exterior, D(r) as its
boundary, and 4,  as the annulus.

Lemma 8.1. There are p; < p, € (0,1) such that for all large R and essen-
tially all choices of (R, S,)>_, the Brownian motion of M( p,) eventually stays
in Uy < g(g)f'( g) whereas Brownian motion on M(p,) eventually stays in

Usier > 2o S(g) and these two sets are disjoint.

Proof. As before, we first operate on L. Let p; be small so that the
arguments of §3 prove that the translation invariant walk on I' given by P,
finds the set {g|%(g)> 2%/(g)} absorbing. Now choose R to be large
enough so that in the sense of §5 the Brownian motion on L gives rise to a
nearly Markov walk on I' to which the arguments of §3 also apply and enable
one to deduce that U,y <23 S(g) is absorbing in L(p;). Repeat the
procedure for p, chosen close to one with the role of a and b reversed.

Now we must compare the motions on M, L. Let z, denote the Brownian
motion on M( p) which for definiteness has z; € é(e). Then projecting to K
and taking the unique lift in Z which starts in Q(e) we obtain a Brownian
motion “z, on L started in Q(e). Of course z, 'z, are far from
independent—they are coupled in a rather precise way. Suppose z; € 0(g)
and the first é(h) (k| # |g]) visited by z after time s is Q(g’). Then
lg’| — |g|l € {—1,1}. Moreover if R is chosen large enough we can obtain

P(lg] >1g) > (1~ o) min 122 2P 17| <l
p p
independent of the values of z,, g, etc. Choose ¢ so that

2p, 201 - p,
(1—e)min(l_‘p' ,( P'))>1+5, i=1,2.

Pi Pi
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Let s; be the f1rst time z, leaves S(e) and let X; be the unique element g of
I such that z, € Q( g)c S( g)- Let s, be the first time z, leaves S( _q) after
time s,_;, and X, the unique element 7 of I' such that z, € Q(h), etc.
Combining the remarks of the last paragraph with an 1ndependent lower
bound for the probability that | X, | # | X,| we see that lim,_, _(]X,|/»n) > 0.
Following simpler but similar arguments to those in §3 we also see that

lim (#(X,)/n)>0 and lim (#(X,)/n)> 0.

Suppose now that (R, S,)%_; satisfy n = o(R,);* then two properties
follow. First, there is a time T < oo after which there does not exist a
triple k, m <m’ with T <m < m’, |X,| € [R,, S,], and |X,,| < k. Second,
max{k|Im < n, |X,] € [R,.S,]} is o(JX,]) and o(|n]).

Let “X, be the unique g € T such that Lz:" € O(g). Then looking back at
the purely algebraic Lemma 6.2 we see that |“X; ' - X,| = o(]X,]). It follows
that

|2 ("X,) - (X, )I = O(IX ) = o(n) = o(#(X,)),

|2("x, )-
This proves the lemma.

We now wish to choose our sequences [R,, S,]?_; so that M(p;) has no
positive harmonic functions, / = 1,2. But before doing this we need some
general discussion of boundary Harnack principles. A boundary Harnack
principle takes the following from [1]:

Let hy, h, be positive harmonic functions on some open set U C R? let V
be an open set intersecting 8U, and let X be a compact subset of U lying
strictly inside V. Suppose h,, h, are both zero on 9U N V. Then A, /h, extends
to be continuous on X and there are absolute constants ¢; < 1 < ¢, such that

h h
o < 74 (x)/=(y) <¢, foralx,yeK.
hy " by

Such a principle does not in general hold without some conditions being
imposed on 9U. We are interested in the special case where U is a cylinder (or
annulus) and #,, &, are both positive, harmonic on the cylinder U, and zero at
one end 9,U of U. In this case it is elementary to prove that s, /h, has a C*®
extension to d,U, moreover its derivatives on 0,U are all controlled in their size
by the value of h;/h, at any fixed point in 3,U U U.

Consider the action of 6, on {g € I'l|g| > n}. This action extends to
E, C M by taking $(g) to $(g8,). Checking that this is compatible with the
identifications which make up M is quite routine except when |g| € [Ry, S,]

2 This is our weak hypothesis on the (R,,, S,).
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for some k < n. In this case the construction of M identifies Cy(g) with
Cy-1(g0,)—to be compatible with the above @, action it is thus necessary that
Cy(g0,) is identified with Cy-1((g8,)8,); this will only happen if 6,6, = 6,6,.
Again this follows because 8> = 8,_,

We now prove the essential technical result, the statement is essentially
equivalent to that of Proposition 6.3, but the proof is not the same.

Let T(r) denote the first time z, hits D,, ¢ > 0.

Proposition 8.2. For each a > 1, n, R, there is an S (which might depend
on the parameter p) such that if S, > S and F is any subset of Dg we have for all
x € Dp,

P*(zys, € FIT(R,) > T(S,))
al< <a Vj.
Px(zT(S") € F8/|T(R,) > T(S,,))

Remark 1. In other words if Brownian motion is started on the inner
boundary of the annular region A, ; and is conditioned to remain in A, o
until it hits the outer boundary Ds, then it is essentially as likely to leave
through any translate F8, of F as it is through F itself.

Remark 2. It might not be clear what is meant by Brownian motion started
on Dp conditioned to leave A,  through Dg. To make this precise we
reinterpret the statement in terms of positive harmonic functions. If x € Az
the conditonal probability is easily interpreted:

Let h . be the positive harmonic function on A ¢ obtained by solving the
Dirichlet problem with value 1 on F and zero elsewhere on 34, . The claim
is that the conditional probability

P27, € FIT(R,) > T(S,))

is Just hp(x)/hp, (x) for x € Ag 5. As both of these positive harmonic
functions A, A D, T Zero on DR and near Dy, Ag s Just looks like a
union of cylinders'we may apply the boundary Harnack prm01ple to see that

he/hp, extends continuously to Dy, . The value of this ratio is then what we
mean by the above conditional probablhty when x € D,

To obtain the claimed identification of the condmonal probability with the
ratio of positive harmonic functions let 7 denote the first time z quits A .
Then T(R,) > T(S,) is precisely the statement zr € Dy, but if z is in Dy
then z; s, is in F if and only if z7 is in F; so we restate our conditional
probability as

P*(zy€ Fand z, € Ds,,)

PX(ZTEFIZTEDS,,)= Px(z D )
T s,
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However F C Dg so this equals

P*(zp € F) _ hp(x)
PX(ZTEDSH) B hDs,,(x)

as required. Of course this is just the normal Doob A-transform procedure—the
only slightly novel remark is that the existence of a boundary Harnack
principle allows one to start the process at a point x on the boundary
providing the boundary values of the conditioning # are zero in a neighbor-
hood of x.

Proof. We wish to prove that if x isin D then providing S, is large enough
one has

~ < a.

hDs"(x) . hfog(x)

Suppose it were not true; fix @ > 0 and let S, — o0. A simple compactness
argument (using the equi-continuity provided by the boundary and usual
Harnack principles) shows the existence of x € Dy, j < 3"~1 and h positive
harmonic on Eg (where S, is taken to be oo in the construction of M ) such
that A(x8/)/ h(x) > a. We prove this to be impossible.

The positive harmonic functions on Ep which are zero on Dy and are
normalized to be one at some fixed point form a compact convex set (again
this uses BHP). It is enough to prove that the extremal ones are invariant
under §,—for then they all are. But if % is extremal this means it is minimal, so
that if 0 < & < ch, then % = dh for some constants c, d.

In Ep with the hypothesis that S, = co we have a uniform estimate for
y € Ex of d(y, y8,), and because we have uniform estimates on curvature.
etc. this can be translated into a uniform Harnack estimate: for all 4 > 0
harmonic on E and zero on D we have h(y) > Ch(y6,) for all y € E
and some fixed C. It follows that if 4 is minimal, then A(y8/) = ¢(j)A(p)
V y, where ¢ is a real character on the cyclic group of order 3”1, Of course the
only such character is the constant one so h(-8/) = h(-) as required. This
completes the proof.

We may use Proposition 8.2 to define the (R,, S,)%_; inductively. Choose
R, arbitrarily and fix « > 1. Suppose R, is determined; let S(p,), S(p,) be
the values of S determined by 8.2 with this value of a and the two choices of p
determined earlier. Choose S, = max(S(p,), S(p,)) and R, ;> S, so that
n = o(R,). We claim that M(p,), i = 1,2, as constructed will have no positive
harmonic functions.
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To prove that M admits no nonconstant positive harmonic functions we
proceed from Proposition 8.2 as we did from Proposition 6.3 in §6 for the
Markov chain case. We prove

Proposition 8.3. There is a B such that for any choice of n, x, y € B,, and
F C Dy the estimate

1 px(zﬂsn) € F)
2 <—— <8
W(Znsn) < F)

holds.

Remark. It follows from this proposition that any positive harmonic func-
tion & on By satisfies 1/8 < h(x)/h(y) < B forall x,y € B,. ButUB, = M
and in the sense of [9] the pairs (B,, B; ) form a cover by uniform Harnack
pairs. It follows that any positive harmonic function defined on all of M is
uniquely determined by its value at any single point x € B,; this is non-
empty and so the positive harmonic function is constant.

Proof. Although slightly technical, the following argument is in essence a
repeat of the Markov chain argument. To simplify notation let T denote the
first time z, leaves Bg, 7; the last time before T that z, leaves B,, and T, the
last time before Q that z, leaves Bg. Let 7, = 0 if z, never enters B, (i = 1) or
Bg (i = 2). We may condition on the value of B, as follows. If x € 4, g,
then

P*(zo€ F|7 =0) = [Ex(lFDZfQ(zQ €F|n=0)|n = 0)-

Using Lemma 8.2 we see that the choice of [R,,S,]7 ; ensures that the
integrand on the right-hand side varies by a factor at most « if F is replaced
by F6; for any choice of j. It follows that we may extend the conclusion of 8.2
shghtly to

P*(zp € Fim, = 0)
P*(z, € F4!|7, = 0)

<a VjeLZ,

for all x in 4, R, But, because the § action is defined outside B,, we may
move x rather than F and obtain
. P¥zpe Fir >0)

a < - <a
P*(z,€ F|7 > 0)

for all x €4, and all j< 3/~ (although we do not use it, the same
estimates hold true of the unconditional probability that Z, first exits 4, 5
through F).
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Let O = U{Q(g)!|g| = n}, and partition O into O,, O,, O, O, according to
the leftmost letter of g in reduced form. Let H be the first time z, hits O and
H the first time that z . hits O after = (ie. after finally entering 4, , ).
Suppose x is in B,; by conditioning on the value of z,; we have

P*(zo € F) = EX(P*#(z, € F|7 = 0)).

But we may apply Harnack to see that the value of P’(z, € E|m =0) does
not change by more than a bounded factor 8 as y varies over Q(g) for some
fixed g with |g| = » (B is independent of g, n, etc.). The earlier remarks
guarantee that as one changes x to x8; one does not change the value of the
expression by more than a factor a. So we have that

4
(0113)_1 YP(z5€ Oi)Px’(ZQ €F|m =0)
1

<P*(z, € F) < (aB)

4
Y P (z5€ 0,)P*(z,€ Flr =0)],
1

where x, is any fixed point in O,.
To finish the argument we claim that there is a universal lower bound y on
P*(zz € O,)forx € B,and i =1 --- 4. For then we have

4
(aﬁ)_lepx'(zQ € F|r, = 0)
1
4
<P*zp€F)<(af))P*(z,€ F|m =0)
' 1

for all x € B,; in other words to within a factor (af)?/y the probability of the
unconditional process hitting F does not depend on x € B,. This proves the
theorem subject to our claimed lower bound on P*(z4 € O,). First we recall
that when considering the discrete skeleton X; € T’ of z,, we saw that there is
an independent lower bound on the probability of the length of X, ever
decreasing below its current value independent of the value of X,. The same
arguments also prove that (for large enough R) there is a § such that if z, is in
O, then the probability of z, ever reentering the ball B, (which is slightly
separated from O) is at most (1 — § < 1) independent of the value of z,, n. It
follows that with probability at least § (where 8 is independent of the value of
z,;) we have H = H. So 8P*(z,; € 0,) < P*(z; € 0,). It is enough to give a
lower bound & on the value of P*(z, € O,) independent of x € B,, i, n and
then put y = de.
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Let hi(x) = PX(zy € O)), K is positive and harmonic off O. D, is a union
of circles each of which bisects a cylinder terminating at O. If the cylinder
terminates at O,, then A has value at least 3 on that circle. However we have a
uniform upper estimate (6 - Diam( X)) on the distance within D, from any one
of the 4 - 3"~ ! boundary circles in D, and the nearest of the special ones which
bisect cylinders terminating in O, (3*~! in all). We also have a uniform lower
bound of R/2 on the distance from the boundary of B, to the edge of the
domain of harmonicity of 4. It follows from the constant negative curvature of
M (lift to the universal cover) that these distance estimates can be turned into
Harnack estimates; using these we obtain a lower estimate ¢ for the value of A’
on D, independent of n, i. But by the minimum principle this estimate extends
to B, and we have the estimates

h(x)>e VxeB, P¥z5€0)>8e=nyp,

as we required.

This proves that M( p;) has no nonconstant positive harmonic functions. It
is probable that the reader will be put off by the technicality of the above
argument. He should not be—the main point is that once the Brownian
traveller has emerged from B, for the last time the only thing which really
affects his probability of hitting F < Dg is which of the four equivalence
classes of words of length n he chooses to enter 4, s through. Because there
are only four and they are all evenly spread out through B, the probability of
last exiting through O, is much the same as the probability of last exiting
through O,, j # i. Unfortunately one has to prove it.

It is plain sailing to prove that N( p,) admits precisely two linearly indepen-
dent positive harmonic functions (both bounded of course) and N( p,) admits
only the constant functions. One simply repeats the arguments of §7 with small
changes. First reflection is replaced by £ action (so A'(x) = h(Px), etc.).
Then the argument for i =1 goes through word-for-word; for i = 2 one
follows §7 to prove that any minimal harmonic function is bounded. Then one
uses Harnack to prove that if z + A" = 2¢, then we have ¢/8 < h(z) < ¢8 for
all z € U, crxe, (x> @) S(X), but the latter is an absorbing set in M( p,)
so the estimate propogates to all z € M( p,). In particular & cannot be
minimal unless it is constant (because it is subordinated by ¢/8). This
argument would also work in §7 but the appeal to Harnack is not necessary
there.
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raised the question of what happens to lim
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(A (X,)/%#(X,)) when p is

n=—cc

close to 3 for the simple random walk case. This was solved completely in the
ensuing discussion mainly by M. Barlow, T. K. Carne, W. Kendall and D.
Williams. It will be published as a separate note.
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